Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Jun Deng ${ }^{\text {a }}$ and Xin-Hua Li $^{\text {b* }}$

${ }^{\text {a }}$ Foundation Department, College for Workers and Staff of Anshan Iron and Steel Group Corporation, Anshan, Liaoning 114032, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemistry and Materials Engineering, Wenzhou University, Zhejiang Wenzhou 325027, People's Republic of China

Correspondence e-mail: lixinhua01@126.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
R factor $=0.034$
$w R$ factor $=0.083$
Data-to-parameter ratio $=11.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Poly[[tetraaquabis(μ_{5}-1-carboxybenzene-3,5dicarboxylato)dilead(II)] monohydrate]

Crystals of the title compound, $\left\{\left[\mathrm{Pb}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{O}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\right.$-$\left.\mathrm{H}_{2} \mathrm{O}\right\}_{n}$, were obtained from an aqueous solution. In the crystal structure, each $\mathrm{Pb}^{\text {II }}$ cation is nine-coordinated by seven O atoms from five carboxylate groups of five 1-carboxybenzene-3,5-dicarboxylate (TBC) dianions and two water molecules. Pairs of Pb atoms are bridged by two tridentate carboxylate groups of two TBC dianions, yielding centrosymmetric dinuclear complexes. These are connected by TBC dianions, forming a three-dimensional network.

Comment

Lead(II) is capable of accommodating different coordination numbers and geometries with or without a stereochemically active lone pair (Wang \& Vittal, 2003). Of these, a number of polymeric $\mathrm{Pb}^{\mathrm{II}}$ compounds have been structurally characterized (Cecconi et al., 2003; Bridgewater \& Parkin, 2000; Ying et al., 2003). The absence of crystal field stabilization energy effects also allows $\mathrm{Pb}^{\mathrm{II}}$ cations to adopt a range of different coordination geometries not restricted to octahedral, tetrahedral or square planar (Foreman et al., 2000). The benzene-1,3,5-tricarboxylic acid (TBCA) ligand binds to metal atoms in a variety of bonding modes. When TBCA binds to lead ions, various coordination modes and conformations can be obtained, making this ligand particularly useful for the study of the coordination chemistry of Pb^{2+}. Thus, we have selected the $\mathrm{Pb}-\mathrm{TBCA}$ system to extend this research and we present here the crystal structure of the title compound, (I).

(I)

Compound (I) crystallizes with one Pb^{2+} and one TBC dianion in the asymmetric unit (Fig. 1). The Pb atom has a coordination number of nine. Each Pb ion is coordinated by seven O atoms from five carboxylate groups from five TBC anions. Two O atoms from water molecules complete the

Figure 1
The contents of the asymmetric unit of (I), together with symmetryequivalent atoms to complete the coordination of Pb 1 . Symmetry codes as in Table 1.

Figure 2
Coordination mode of the TBC dianion. Symmetry operations as in Table 1, plus (v) $x, y, 1+z ;($ vi) $1+x, 1+y, 1+z$.
coordination environment. The coordination geometry about Pb cannot be derived from a simple polyhedron. The geometry of the TBC dianion is unexceptional, and two of its three carboxylate groups are deprotonated. Each dianion coordinates to five Pb^{2+}; Fig. 2 shows the coordination mode. One of the deprotonated carboxylate groups coordinates to three Pb : O 1 and O 2 chelate a Pb cation, and both O 1 and O 2 coordinate to one Pb cation. The second carboxylate group (O 3 and $\mathrm{O} 4)$ coordinates to one Pb . The protonated carboxylate group is monodentate. Hence, pairs of $\mathrm{Pb}^{\text {II }}$ ions are bridged by two tridentate carboxylate groups, forming centrosymmetric dinuclear units with the inversion centre halfway between the

Figure 3
Chains derived from edge-sharing PbO_{9} polyhedra.
two Pb . These units form polymeric chains that run along the a axis (Fig. 3). The chains are linked together by the TBC anions, yielding a three-dimensional framework.

There are also $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), which connect the coordination polymer and water molecules and help to stabilize the crystal structure.

Experimental

The title compound was synthesized by adding a solution of benzene-1,3,5-tricarboxylic acid ($0.04 \mathrm{~g}, 0.2 \mathrm{mmol}$) and 2,2'-dithiosalicylic acid $(0.06 \mathrm{~g}, 0.2 \mathrm{mmol})$ in dimethylformamide $(10 \mathrm{ml})$ dropwise to a stirred solution of lead nitrate $(0.07 \mathrm{~g}, 0.2 \mathrm{mmol})$ in water $(10 \mathrm{ml})$ at 298 K . The reaction mixture was filtered and the filtrate allowed to stand for about six weeks until colourless prismatic crystals of (I) were obtained. Crystals suitable for X-ray diffraction were collected by filtration, washed with water and ethanol and dried in air.

Crystal data

$\left[\mathrm{Pb}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{O}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=910.64$
Triclinic, $P \overline{1}$
$a=7.4106$ (6) Å
$b=8.2178$ (7) \AA
$c=10.1424(9) \AA$
$\alpha=94.694(10)^{\circ}$
$\beta=105.165(10)^{\circ}$
$\gamma=108.024$ (9) ${ }^{\circ}$

Data collection

Bruker APEX area-detector diffractometer
ω scans
Absorption correction: numerical (SADABS; Bruker, 2002)
$T_{\text {min }}=0.344, T_{\text {max }}=0.465$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.083$
$S=1.29$
1949 reflections
171 parameters
H -atom parameters constrained

$$
\begin{aligned}
& V=557.91(10) \AA^{3} \\
& Z=1 \\
& D_{x}=2.710 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=15.16 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.10 \times 0.06 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

3941 measured reflections
1949 independent reflections
1896 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\max }=25.1^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.017 P)^{2}\right. \\
& +3.5615 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\max }=1.48 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-1.57 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0066 \text { (8) }
\end{aligned}
$$

metal-organic papers

Table 1
Selected bond lengths (\AA).

$\mathrm{Pb} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.562(6)$	$\mathrm{Pb} 1-\mathrm{O} 1^{\text {ii }}$	$2.745(6)$
$\mathrm{Pb} 1-\mathrm{O} 1$	$2.617(6)$	$\mathrm{Pb} 1-\mathrm{O} 5^{\text {iii }}$	$2.782(6)$
$\mathrm{Pb} 1-\mathrm{O} 2$	$2.641(6)$	$\mathrm{Pb} 1-\mathrm{O} 2^{\mathrm{iv}}$	$2.815(6)$
$\mathrm{Pb} 1-\mathrm{O} 7$	$2.652(9)$	$\mathrm{Pb} 1-\mathrm{O} 8$	$2.875(8)$
$\mathrm{Pb} 1-\mathrm{O}^{\mathrm{i}}$	$2.702(6)$		
Symmetry codes: (i) $x, y, z-1 ;$ (ii) $-x+2,-y+1,-z$; (iii) $x-1, y-1, z-1 ;$ (iv)			
$-x+1,-y+1,-z$.			

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{-}-\mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{v}}$	0.82	1.83	$2.629(8)$	164

Symmetry code: (v) $x+1, y+1, z$.

H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $\mathrm{C}-\mathrm{H}=0.93 \AA$, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$, and $\mathrm{O}-\mathrm{H}=0.82 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. Water H atoms appear to be disordered and were not considered in the structure model. The highest peak and deepest hole of the residual electron density are 1.06 and $0.92 \AA$, respectively, from Pb 1 .

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

We acknowledge financial support by Zhejiang Provincial Natural Science Foundation of China (grant No. Y404294), and the ' 151 ' Distinguished Person Foundation of Zhejiang Province.

References

Bridgewater, B. \& Parkin, G. (2000). Inorg. Chem. Commun. 3, 534-536.
Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Cecconi, F., Ghilardi, C. A., Midollini, S. \& Orlandini, A. (2003). Inorg. Chem. Соттип. 6, 546-548.
Foreman, M. R. St. J., Gelbrich, T., Hursthouse, M. B. \& Plater, M. J. (2000). Inorg. Chem. Commun. 3, 234-238.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, X. B. \& Vittal, J. J. (2003). Inorg. Chem. Commun. 6, 1074-1077.
Ying, S. M., Mao, J. G., Yang, B. P. \& Sun, Z. M. (2003). Inorg. Chem. Commun. 6, 1319-1322.

[^0]: © 2006 International Union of Crystallography All rights reserved

